منابع مشابه
On indefinite BV-integrals
In 1986 Bruckner, Fleissner and Foran [2] obtained a descriptive definition of a minimal extension of the Lebesgue integral which integrates the derivative of any differentiable function. Recently, Bongiorno, Di Piazza and Preiss [1] showed that this minimal integral can be obtained from McShane’s definition of the Lebesgue integral [4] by imposing a mild regularity condition on McShane’s parti...
متن کاملA Note on Indefinite Integrals
1. G. H. Hardy and M. Riesz, The general theory of Dirichlet's series, London, 1915. 2. E. Kogbetliantz, Sur la sommation des séries divergentes par les moyennes simples et doubles, Ann. École Norm. (3) vol. 42 (1925) pp. 193-216. 3. Otto Szász, Verallgemeinerung eines Littlewood'sehen Salzes über Potenzreihen, J. London Math. Soc. vol. 3 (1928) pp. 254-262. 4. A. Zygmund, Remarque sur la somma...
متن کاملIndefinite extrinsic symmetric spaces I
We find a one-to-one correspondence between full extrinsic symmetric spaces in (possibly degenerate) inner product spaces and certain algebraic objects called (weak) extrinsic symmetric triples. In particular, this yields a description of arbitrary extrinsic symmetric spaces in pseudo-Euclidean spaces by corresponding infinitesimal objects. MSC 2000: 53C50, 53C35, 53C40
متن کاملA generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution
The aim of this paper is to generalize the Euler-Lagrange equation obtained in Almeida et al. (2011), where fractional variational problems for Lagrangians, depending on fractional operators and depending on indefinite integrals, were studied. The new problem that we address here is for cost functionals, where the interval of integration is not the whole domain of the admissible functions, but ...
متن کاملDimensions of Anisotropic Indefinite Quadratic Forms, I
By a theorem of Elman and Lam, fields over which quadratic forms are classified by the classical invariants dimension, signed discriminant, Clifford invariant and signatures are exactly those fields F for which the third power IF of the fundamental ideal IF in the Witt ring WF is torsion free. We study the possible values of the uinvariant (resp. the Hasse number ũ) of such fields, i.e. the sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1965
ISSN: 0386-2194
DOI: 10.3792/pja/1195522295